کد کنترل

623

数数数数数数数数数数数数数数数数数数数

صبح جمعه ۹۷/۱۲/۳

دفترچهٔ شمارهٔ (۱)

جمهوری اسلامی ایران وزارت علوم، تحقیقات و فناوری سازمان سنجش آموزش کشور

آزمون ورودی دورهٔ دکتری (نیمهمتمرکز) ـ سال ۱۳۹۸

رشتهٔ بیوتکنولوژی ـ کد (۲۷۱۹)

مدت پاسخگویی: ۱۲۰ دقیقه

تعداد سؤال: ۹۰

«اگر دانشگاه اصلاح شود مملکت اصلاح می شود.»

عنوان مواد امتحاني، تعداد و شمارهٔ سؤالات

Ī	تا شمارة	از شمارهٔ	تعداد سؤال	مواد امتحاني	رديف
	:40	3.1	4.	مجموعه دروس تخصصی: بیولوژی سلولی و مولکولی _بیوشیمی _ میکروبیولوژی و ایمونولوژی _ ژنتیک	× Y

استفاده از ماشین حساب مجاز نیست.

این آزمون نمرهٔ منفی دارد.

حق جاب، تكثير و انتشار سؤالات به هر روش (الكترونيكي و...) پس از بركزاري آزمون، براي تمامي اشخاص حقيقي و حقوقي تنها با مجوز اين سازمان مجاز مي باشد و با متخلفين برابر مقررات رفتار مي شود.

数数数数数数数数数 144Y 数数数数数数数数数

* داوطلب گرامی، عدم درج مشخصات و امضا در مندرجات جدول ذیل، بهمنزلهٔ عدم حضور شما در جلسهٔ آزمون است.

اينجانب در جلسهٔ اين آزمون شركت مينمايم.

امضا:

۱- اضافه کردن دم Poly A توسط کدام نوع RNA پلیمراز صورت می گیرد؟

RNA polymerase III (7

RNA polymerase IV (1

RNA polymerase II (*

RNA polymerase I (*

۲- مراحل زیر برای انجام PCR بایستی انجام شود:

۱- اتصال پرایمرها، ۲- دناتوره کردن DNA، ۳- سنتز DNA، ۴- حرارت دادن

کدام گزینه در مورد ترتیب مراحل فوق صحیح است؟

- کدام خصوصیت به صورت معمول در یک پلاسمید وجود ندارد؟

Multiple cloning site (7

Beta-galactose genes ()

Antibiotic resistance gene (f

Origin of replication (*

- محرک اصلی مکانیسم تشنگی از طریق اسمورسپتورها کدام است؟

۲) اعصاب حسى دهان و حلق

١) كاهش غلظت سديم خون

۴) افزایش اسمولاریته مایع خارج سلولی

۳) خونریزی

چرا میزان اشتباه آنزیم ترانس کریپتاز وارونه نسبت به سایر پلیمرازها بیشتر است؟

۱) به دلیل نداشتن فعالیت اگزونوکلئازی "۲ به ۵

۲) به دلیل نداشتن فعالیت اگزونوکلٹازی ۵ به ۳

٣) به دلیل داشتن فعالیت کم اگزونوکلٹازی

۴) چون سنتز DNA از روی RNA خیلی مشکل است.

۹- به چه دلیل آنزیمهای محدود کننده DNA خودباکتری تولید کننده را تخریب نمی کنند؟

متیله شدن DNA خارجی توسط آنزیم محدودکننده

۲) متیله شدن DNA باکتریایی توسط آنزیم محدود کننده

٣) فسفريله شدن DNA خارجي توسط آنزيم محدود كننده

۴) فسفريله شدن DNA باكتريايي توسط آنزيم محدودكننده

۷- کدامیک از دلایل زیر بالاتر بودن سرعت همانندسازی DNA را در سلولهای یوکاریوت درست توجیه میکند؟

۱) نیاز کمتر به نیازهای Proof reading در سلولهای یوکاریوتی

۲) استفاده سلولهای یوکاریوتی از آنزیمهای متفاوت از لحاظ عملکرد بیوشیمایی

۳) استفاده سلولهای یوکاریوتی از نواحی متعدد برای شروع همانندسازی

۴) متابولیسم بالاتر سلولهای یوکاریوتی برای تأمین مواد پیشساز DNA

۴) باز آلی نادر

۲) سیتوگروم (۴

۴) متافاز

٣) يروفاز

آزمون ورودی دورهٔ دکتری(نیمهمتمرکز) ـ کد (۲۷۱۹) چرا ژل پلی اکریل آمید باید بین دو لایه شیشه تهیه شود؟ ۱) کارکردن با ژل راحت تر است. ۲) ضخامت ژل خیلی کم است. ٣) يلى اكريل آميد سمى است. ۴) در حضور اکسیژن پلیمریزه شدن ژل دچار اشکال میشود. کدام گزینه در مورد PCR صحیح است؟ ۱) هرچه اندازه محصول بزرگتر باشد باید دمای اتصال پرایمرها افزایش پابد. ۲) DNAهای خطی بهتر از DNAهای حلقوی تکثیر میشوند. ۳) با PCR مى توان براحتى قطعات تا ۴ ۰ kbp را تكثير كرد. ۴) میزان ،MgCl در واکنش PCR اثر زیادی در نتیجه واکنش ندارد. کدامیک از موارد زیر کتون بادی نمی باشد؟ ۱) بتا _ هیدروکسی بوتیریک اسید ۲) استون ۳) استیل COA ۴) استواستات ۲ و ۳ بیس فسفوگلیسرات به ترتیب در حاشیه کدام یک از مسیرهای زیر و در کدام سلول تولید میشود؟ ۱) گلیکولیز _ RBC) ٢) گلوكونئوژنز ـ كليه ۴) بتااکسیداسیون _ کبد ٣) گليکوليز _ کبد ۱۲- اینوزین یکاا ٣) نوكلئوتىد ۲) نوکلئوزید همه پروتئینهای زیر هموپروتئین هستند بهجز: ٣) گاما _ گلوبولين ١) هموگلوبين ٢) كاتالا; دمای ذوب کدام یک از اسیدهای چرب زیر کمتر از بقیه است؟ ۲) آلفا _ لینولنیک اسید ۱) مریستیک اسید ۴) آراشیدیک اسید ۳) استئاریک اسید کدام یک از عوامل زیر در همانندسازی DNA هنگام تقسیم سلولی نقشی ندارد؟ Topoisomerase (7 Recombinase () Ligase (f Primase (* کدامیک در مورد آغاز همانندسازی DNA هنگام تقسیم سلولی درست است؟ همانندسازی DNA همیشه از محلهای خاص آغاز می گردد. ۲) مولکولهای آغاز گر همانندسازی بهصورت تصادفی محلّی را روی DNA برای آغاز همانندسازی انتخاب می کنند. ۳) همانندسازی DNA در پروکارپوتها و پوکارپوتها محل خاصی برای آغاز ندارد. ۴) همانندسازی DNA در پروکارپوتها از محلهای خاص آغاز می گردد ولی در پوکارپوتها محل آغاز خاصی ندارد. ۱۷− کدامیک از موارد زیر در یک رشته DNA تک رشتهای، نوکلئوتیدها را بهصورت پایدار کنار هم نگه می دارد؟ ۲) باند هیدروژنی ۱) باند فسفودی استر ۴) نیروی stacking بین بازهای آلی ٣) باند غير كوالان کروموزومها در کدام مرحله از فاز میتوزی فشرده ترین حالت را دارند؟

٢) أنافاز

۱) تلوفاز

۴) دى آسىل گلىسىرول

آزمون ورودی دورهٔ دکتری(نیمهمتمرکز) ـ کد (۲۷۱۹) صفحه ۲ ۱۹ کدام یک در مورد تقسیم سلولی از نوع میتوز درست است؟ ۱) منجر به افزایش بار کرموزومی سلول دختر می گردد. ۲) منجر به تولید سلولهایی با بار کروموزومی یکسان با سلول مادر می گردد. ۳) منجر به تولید سلول با بار کروموزومی کمتر از سلول مادر می گردد. ۴) بسته به نوع بافت، منجر به تولید سلولهایی با بار کروموزومی متفاوت می گردد. اگر یک سلول یوکاریوتی را در محیطی با گوگرد رادیواکتیو کشت دهیم، احتمالاً کدام ملکول رادیواکتیو خواهد بود؟ DNA (F RNA (T ۲) سیستئین ۱) گالاکتوز ۲۱ کدام مولکول تمایل بیشتری به گرفتن اکسیژن دارد؟ Hb (F Hb(O,), (7 Hb(O+)+ (T Hb(O,), (1 ۲۲- چه چیزی تحریک کننده آنزیم استیل کوآ کربوکسیلاز است؟ ۱) گلوکاگون ٣) بالميتوئيل كوآ ۲) سیترات ۴) اپینفرین ۲۳ کلیه مراحل زیر در سنتز پروتئینها نیاز به پیوند پرانرژی فسفاته دارند به جز: ٢) مرحله فعال شدن اسيد آمينه ۱) تشکیل پیوند پپتیدی ۴) اتصال tRNA شارژ شده به ریبوزوم ٣) مرحله جابهجایی ریبوزوم ۲۴- کدامیک از حاملین الکترون در زنجیره تنفسی قادر به جابهجایی در غشای داخلی میتوکندری میباشد؟ ۲) سیتوکروم ۲ ۱) کوآئزیم Q ۴) پروتئینهای آهن _ گوگرد ٣) فلاوريروتئينها ۲۵ در دیابت قندی کنترل نشده کدام یک دیده نمی شود؟ ۲) کاهش غلظت اسیدهای چرب آزاد پلاسما ١) افزايش بتااكسداسيون ۴) کتونمی ۳) اسیدوز ۲۶ در هنگام همانندسازی DNA می توان قطعات کوچک اسید نوکلئیک به نام قطعات اوکازاکی را از سلول جدا کرد. کدامیک از موارد زیر در مورد این قطعات صادق است؟ ۲) دارای اتصال کوالان بین DNA و RNA هستند. ۱) دو رشتهای هستند. ۴) در مناطق Nick ایجاد میشوند. ۳) هیبریدی از DNA و RNA هستند. ۲۷- منظور از degeneracy در کد ژنتیکی چیست؟ ۱) اولین بازکدون در تعیین رمز اسید آمینه اهمیتی ندارد. ۲) یک کدون مربوط به بیش از یک اسید آمینه است. ۳) یک اسید آمینه می تواند دارای بیش از یک رمز باشد. ۴) کدونها بهصورت واضح نیستند. ۲۸ اولین مرحله تشکیل cDNA جهت کلونینگ کدام است؟ ۲) رونویسی معکوس از DNA ١) جفت شدن قطعه يرايمر با رشته الگو ۳) سنتر DNA وابسته به DNA ۴) اتصال انتهاهای غیر چسبنده ۲۹ - اثرات مینرالوکور تیکوئیدی آلدوسترون در باز جذب Na⁺ علاوه بر ادرار در کدام مایع بیولوژیک دیگر اتفاق میافتد؟ ۲) فقط در شیره معده ۱) فقط در ادرار ۴) بزاق _ عرق _ شيره معده ٣) بزاق _ عرق _ مايع مغزى

۳) سرامید

در ساختمان ترکیبات زیر فسفات وجود ندارد بهجز:

۱) لسبتين

۲) اسفنگوزین

. که میزان DNA در کروموز	نشان داده شده است	-31				
نند سازی DNA انسان در چ	است. با این حال هما					
كاريوتها وجود ندارد.	۱) قطعات کلنو در یو					
$\Delta' \rightarrow T'$ کاریوتها از سمت	۲) DNA پلیمراز یو					
کاریوتها سریعتر از پلیمراز پر	۳) DNA پلیمراز یو					
در یوکاریوتها همزمان تعداد زیادی چنگال همانندسازی فعال هستند.						
UV) از راه چه مکانیسمی باع	پر تو ماورای بنفش (-22				
لیکوزیدی بین بازها و دیاکس	۱) تجزیه پیوند اِن۔گا					
ن	۲) ایجاد دایمرتیمیدی					
DNA کول	۳) ایجاد برش در مولا					
D	۴) متیله کردن NA					
لی غشاء فرضی (در داخل) بر	اگر يتانسيل الكتريك	-٣٣				
۲) ۶۰ برابر	۱) برابر ۱۰					
ی خود را عمدتاً از GTP تأمی	کدام پروسه زیر انرژ	-44				
	Translation ()					
G – action po	olymerisation (*					
کاتابولیسم AMP از طریق اد	کدام ترکیب حاصل آ	-30				
۲) تیامین	۱) اسید اوریک					
		-48				
۲) ريبوفلاوين	۱) نیاسین					
میک از کربوهیدراتهای زیر	از هیدولیز کامل کدا	-٣٧				
۲) کیتین	۱) هپارين					
ظيم فعاليت ژنهاي ساختمان	کدام عامل زیر در تن	-٣٨				
۲) پروموتر	۱) اوپراتور					
وكونئوژنز كدام است؟	اولین آنزیم مسیر گل	-49				
يلاز	۱) پیرووات دکربوکس					
كربوكسى كيناز	٣) فسفوانول پيرووات					
می در صورت دو برابر کردن	در یک واکنش آنزیه	-4.				
	مىافتد؟					
ي شود.	دو برابر م $ m V_{max}$ (۱					
	نند سازی DNA انسان در چ کاریوتها وجود ندارد. کاریوتها از سمت "۲ — "۵" کاریوتها سریعتر از پلیمراز پر نزمان تعداد زیادی چنگال هم نزمان تعداد زیادی چنگال هم لیکوزیدی بین بازها و دی اکس کول DNA کول DNA کول AMP ست؟ (تنها یون دخیل پتاسیہ کی خود را عمدتاً از GTP تأمیر کاتابولیسم AMP از طریق اد کاتابولیسم نازیم ترانس کا کاتابولیسم کا کیمین ت برای فعالیت آنزیم ترانس کا کیتین میک از کربوهیدراتهای زیر کا پروموتر کا پروموتر کا پروموتر کربوکسی کیناز سک کربوکسی کیناز	پرتو ماورای بنفش (UV) از راه چه مکانیسمی باء ۱) تجزیه پیوند اِن-گلیکوزیدی بین بازها و دی کسر ۲) ایجاد دایمرتیمیدین ۴) متیله کردن DNA ۱۵ متیله کردن DNA ۱۶ متیله کردن الکتریکی غشاء فرضی (در داخل) بر غلظت آن در خارج است؟ (تنها یون دخیل پتاسیم ۱۱ میروسه زیر انرژی خود را عمدتاً از GTP تأمی ۲ میرابر ۱۱ میروسه زیر انرژی خود را عمدتاً از GTP تأمی ۲ میرابر ۱۱ میروسه زیر انرژی خود را عمدتاً از GTP تأمی ۲ میرابر ۱۱ ویراتور ۱۱ پیرووات دکربوکسیلاز ۱۱ پیرووات دکربوکسیلاز ۱۱ میرابر کردن ۱۲ فروانور کردن کردن کردام است؟				

۴۱ فرض کنید بر روی نقش بازوفیلهای انسان در آلودگیهای کرمی و ازدیاد حساسیتها مشغول آزمایش هستید، و غلظت هیستامین در خون افراد سالم و آلوده به کرم را اندازه گرفتهاید. به دو گروه افراد مورد مطالعه غلظتهای متفاوت آلرژنی مثل (Brugia malayi (Bm Ag) که باعث تحریک ترشح هیستامین میشود را تزریق کرده و نتایج در شکلهای زیر ثبت گردیده است. بهنظر شما کدام گزینه می تواند صحیح باشد؟

- ۱) افزایش Fce R درسطح پلاسماسلهای میزبان آلوده، منجر به دگرانوله شدن سلولهای آماسی میشود.
- ۲) در آزمایش روی خون میزبان آلوده فعالیت سلولهای T_H ۲ حتماً افزایش پیدا می کند و منجر به افزایش شدید IFN $-\gamma$ و کاهش T_H ۲ می شود.
- ۳) در این آزمایش بهدلیل وجود واکنشهای ازدیاد حساسیت نوع اول و افزایش شدید هیستامین در خون میزبان آلوده، عدم مشاهده پاسخ ایمنی همورال در میزبان دور از انتظار نیست.
- ۴) هیستامین جزء اساسی گرانولهای ماستسلها و بازوفیلها در انسان است و اگر آزمایشگاه برای اندازه گیری
 ۹) هیستامین مجهز نبوده ولی برای اندازه گیری PAF کاملاً مجهز باشد، می توان PAF را اندازه گیری کرد.
 - ۴۲ کدامیک از سلولهای بنیادی زیر قدرت self renewing بیشتری دارند؟
 - Multipotent stem cells (1
 - Hematopoietic stem cells (7
 - Common myeloid progenitor cells (*
 - Common lymphoid progenitor cells (*
 - ۴۳ در روش وسترن بلات جهت شناسایی آنتیژن به ترتیب چگونه عمل می شود؟
 - ١) انتقال به غشا، استفاده از أنتى بادى اختصاصى، جداسازى الكتروفورتيك، ظهور لكهها
 - ۲) انتقال به غشا، جداسازی الکتروفورتیک، ظهور لکهها، استفاده از آنتی بادی اختصاصی
 - ٣) استفاده از آنتی بادی اختصاصی، انتقال به غشا، جداسازی الکتروفورتیک، ظهور لکهها
 - ۴) جداسازي الكتروفورتيك، انتقال به غشا، استفاده از آنتي بادي اختصاصي، ظهور لكهها
 - ۴۴- کدام ایزوتایپ از ایمونوگلوبولینها توانایی بیشتری در فعال کردن کمیلمان دارد؟
 - IgA (* IgM (* IgE (* IgG ()

ندامیک از ایزوتایپ ایمونوگلوبولینها قادر به عبور از جفت در گاو میباشد؟	-40					
IgG (7 IgA (
۲) IgM هیچ ایزوتیپی قادر به عبور نیست.	i i					
تایج آزمایشها در دو نمونه سرم مربوط به دو گاو بهصورت زیر میباشد؟	-49					
زمایش ۱: رایت $(-4^+/40)$ و $-2 - 40$ و آزمایش ۲: رایت $(-4^+/40)$ و $-4 - 40$ و $-4 - 40$	ā					
دام گزینه در مورد تفسیر نتایج آزمایشها درست است؟	Š					
۱) در آزمایش ۱ بروسلوز مزمن تر می باشد.						
۲) در آزمایش ۲ IgM در واکنشهای ایمنولوژیک نقشی ندارد.						
۲) در آزمایش ۱ نقش IgM در واکنشهای ایمنولوژیک غالبتر میباشد.						
۲) در آزمایشهای ۱ و ۲ نقش غالب در واکنشهای ایمنولوژیک برعهده IgG میباشد.						
در ارتباط با مولکول MHC-I گزینهٔ صحیح را انتخاب کنید؟	-47					
۱) نقشی در ارائه آنتیژنها ندارد.						
۱) در ارتباط با ارائه آنتیژنهای داخل وزیکلی نقش دارند.	Ŋ					
۲) در ارتباط با ارائه آنتیژنهای داخل سیتوپلاسم سلول نقش دارند.	16					
۲) در ارتباط با ارائه آنتیژنهای خارج سلولی نقش دارند.	88					
رای تجویز کدام نوع واکسن وجود ماده کمک ایمنی (ادجوانت) ضروری است؟	-41					
) نوترکیب و غیرفعال ۲) زنده و تضعیف شده ۳ DNA (۴						
ز کدام آزمایش برای تشخیص خودپادتنهای متصل به گلبولهای قرمز استفاده میشود؟	-49					
۱) كومبس غيرمستقيم ٢) ايمونوفلورسنت غيرمستقيم						
۲) کومبس مستقیم (۴) ایمونوفلورسنت مستقیم	旅					
عمولاً واكسيناسيون برعليه برونشيت عفوني پرندگان ناموفق است، چون:	-ƥ					
۱) دفعات تجویز واکسن در گله کم است.						
۱) ویروس موجود در واکسن قادر به تکثیر داخل یاخته نیست.	ĬĬ.					
۲) تغییرپذیری زیاد ویروس دلیل گریز از پاسخ ایمنی است.	8					
۱) واکسنهای رایج قادر به تحریک ایمنی سلولی نیستند.	À					
عالیت کدام یاخته برای ایمنی در برابر عفونت اشرشیاکلی رودهای اهمیت بیشتری دارد؟	-41					
Thi (f Te (f Thr (f Tdth (f						
F − الدر کدام گروه از سیتوکاینها قرار دارد؟	-54					
۱) محرک کلوئی ۲) کموکاینی ۳) تنظیمی ۴) التهابی						
شخصه یاختههای Τγδ چیست؟	-22					
$TCDf^-CDA^+$ (7 $TCDf^+CDA^+$ (7						
TCDf^CDA^ (f TCDf+CDA^ (r	Ö.					
نتیژنهای محلول وارد شده به گره لنفاوی توسط چه سلولهایی به لنفوسیتهای T عرضه میشوند؟	-54					
۱) ماکروفاژها ۲) سلولهای دندریتیک						
۲) لنفوسیتهای B (۴						

صفحه ۹

شد باکتری هموفیلوس در مجاورت کلنیهای استافیلوکوکوس چه واکنشی را مشخص میکند؟						
CAMP test (* Dick test (
Shwartzman reaction (* Satellitism (*	M					
دام گزینه در مورد واکسن BCG صحیح است؟	-99					
) باسیل کشته شده Mycobacterium bovis است.						
) سویه ضعیفشده Mycobacterium bovis است.	92					
) سویه کشته شده Mycobacterium bovis است.						
) سويه تخفيف حدتيافته Mycobacterium tuberculosis است.	i S					
دام باکتری جهت رشد نیاز به ۱۰ ۵−۵ درصد ۲۰ _۰ ۰۰ دارد؟	-84					
) بروسلا آبورتوس ۲) پاستورلا مولتوسیدا						
) بروسلا ملی تنسیس ۴) پسودوموناس آئروژینوزا						
دام آنتیبیوتیک مسیر سنتز اسیدفولیک را در باکتریها مهار م <i>ی کند</i> ؟	-64					
) کلرآمفنیکل ۲) نیستاتین ۳) سولفانامیدها ۴) اریترومایسین						
ا کدامیک از باکتریهای زیر کمتر است؟ ID کدامیک از باکتریهای	-89					
) يرسينيا انتروكوليتيكا (٢) سالمونلا تيفيموريوم						
) اشریشیاکلی انتروپاتوژنیک (EPEC) ۴) اشریشیاکلی انتروهموراژیک (EHEC)	ğ.					
دامیک از مواد زیر در باکتریهای تخمیرکننده (Fermentative) بهعنو <mark>ان الک</mark> ترون گیرنده عمل نم <i>یکند؟</i>	- Y•					
) سولفات ۲) نیترات ۳) اکسیژن مولکولی ۴) کربنات						
ر روش تعیین توالی ماکسام ـ گیلبرت شکست مطلق در رشته DNA برای کدام نوکلئوتید امکان پذیر است؟	-Y1					
) تیمین ۲) آدنین ۳) گوانین ۴) سیتوزین						
ېره و Formamide می توانند چه کاري انجام دهند؟	-٧٢					
) دمای ذوب DNA را کاهش دهند.						
) دمای ذوب DNA را افزایش دهند.						
) موجب سریعتر شدن DNA rennealing شوند.	1 6					
) بر روی Denaturation (واسرشت) DNA تأثیری ندارند.	R					
لیل سرعت بیشتر در همانندسازی DNA در سلولهای پروکاریوتیک نسبت به سلولهای یوکاریوتیک کدام است؟	-78					
) وجود آنزیمهای کمتر در سلولهای یوکارپوتیک						
) وجود ساختارهای نوکلئوزومی در سلولهای یوکاریوتیک	Ÿ.					
) وجود ساختارهای نوکلئوزومی در سلولهای پروکاریوتیک	N.					
) وجود آنزیمهای بیشتر در سلولهای پروکاریوتیک	KK.					
مانندسازی کروموزوم در سلولهای یوکاریوت در کدام فاز انجام میگیرد؟	-44					
Division (* S (* G2 (* G1 (
Klenow Fragmen فرم تغييريافته كدام آنزيم است؟	- V Δ					
DNA Ploymerase III (7 DNA Ploymerase IV (
DNA Ploymerase II (* DNA Ploymerase II (*						

۴) غالبیت توام

آزمون ورودی دورهٔ دکتری(نیمهمتمرکز) ـ کد (۲۷۱۹) ۷۶ سوبسترای کروموژنیک X-gal کدام است؟ ١) ٥- برومو ۴- كلرو - ٣- ايندوليل - بتا D - گالاكتوزيد ۲) ۵- کلرو ۴- برومو -۳- ایندولیل -بتا D - گالاکتوزید ٣ - كلرو ٥- برومو - ٣- ايندوليل - بتا D - گالاكتوزيد ۴) ۵- برومو ۵- کلرو - ۳- ایندولیل - بتا D - گالاکتوزید ۷۷ بروز جهشهای خودبه خودی در مولکولهای DNA تحت تأثیر کدام عامل قرار نمی گیرد؟ ۱) اشعه ماوراء بنفش ۲) اشتباهات سیستم همانندسازی ٣) جابه جايي Insertion sequence در مولكول PNA ۴) تغییرات الکتروشیمیایی موقت در مولکول DNA ۷۸ - کدام گزینه از موارد مؤثر در تغییر نسبتهای فنوتیپی نمیباشد؟ ۱) غالبیت ناقص ۲ ایبستازی ٧٩ - تعریف مناسب از ژنتیک جمعیت چیست؟ ۱) پیشبینی فراوانی ژنوتیپی در جامعه ۲) مطالعه فراوانی های ژنی و ژنوتییی در یک جمعیت ۳) پیشبینی توزیع ژنوتیپی نتاج حاصل از آمیزشها در یک جمعیت ۴) بررسی احتمال جفت گیری افراد با ژنوتیپهای مختلف در جمعیت احتمال اینکه در خانوادهای مرکب از پنج فرزند همگی پسر یا همگی دختر باشند، کدام گزینه اس $(\frac{1}{2})^{\Delta} + (\frac{1}{2})^{\Delta}$ (* $(\frac{1}{2})^{\Delta} + (\frac{1}{2})^{\Delta}$ (* $(\frac{1}{2})^{1_0} + (\frac{1}{2})^{1_0}$ (* $(\frac{1}{2})^{\Delta} + (\frac{1}{2})^{\Delta}$ (*) ۸۱ - از آمیزش دو گاو با ژنوتیپهای aabbCc و AaBbCc چه نسبتی از نتاج دارای هر سه صفت مغلوب خواهند <mark>بود</mark>؟ 1 (7 " () ۸۲ گزینه نادرست درباره ژنهای ایمونوگلوبولین کدام است؟ ۱) هر آنتی بادی توسط شش ژن رمز می شود. ۲) در هر ایزوتیپ ناحیه ثابت آنتی بادی توسط یک ژن رمز میشود. ۳) هر ناحیه متغیر زنجیره سبک توسط دو ژن JL و VL رمز میشود. ۴) هر ناحیه متغیر زنجیره سنگین توسط سه ژن DH ، JH و VH رمز می شود. ۸۳ کدام گزینه در مورد Crossing over صحیح میباشد؟ در تلوفاز میوز I رخ می دهد. ۲) مبادله ژنتیکی بین کروموزومهای غیرهمولوک است. ۳) DNA در جایگاههای غیرمتقابل دو کروموزوم شکسته و متصل می شود. ۴) كياسما محل اتصال و تبادل ماده ژنتيكي بين هر جفت كروموزوم است. ۸۴ در مهندسی ژنتیک حاملین ژن پلاسمیدهایی میباشد که ریلیکون

۱) مستقل دارند.

۳) ندارند.

٣) غالبيت كامل

۲) وابسته دارند.

۴) عامل ممانعت کننده دارند.

نیبیوتیکها در باکتریها کداه	ریافت ژنهای مقاومت به آنت	بارزترین و مؤثر ترین راه دریافت ژنهای مق			
Conjugation (7		Transduction ()			
Transformation (*		Quorum sensing (**			
معمول استفاده كرد؟	ى توان بەعنوان ژن رفرانس	ژنهای کدام مولکول را نم	-18		
GAPDH (*	MHC-I (Y	MHC-II (\			
را چه مینامند؟	,tRNA نرمال وجود ندارد	کدونی که برای آن مولکول	-44		
۳) موتاسیون نقطهای	۲) کدون nonsense	۱) کدون missense			
در E. coli کدامیک از آنزیمهای DNA پلیمراز وظیفهٔ جایگزینی پرایمرهای RNA را با DNA به عهده دارد؟ (۱) DNA Polymerase III					
	Di	NA Polymerase II (7			
	D	NA Polymerase I (*			
7	Terminal deoxy nudeo	otidyl Transferase (f			
زير واحد آنزيم RNA polymerase باكترى مسئول تشخيص پروموتر است؟					
۳) دلتا	۲) آلفا	۱) بتا			
ی از یک نقطه به نقطه دیگر <mark>را</mark>	وموزوم که قابلیت جابهجایا	قسمتهای متحرک یک کر	-9.		
Transposons (7		walking element ()			
le genetic element (F		Mobile part (*			
	Conjugation (۲ Transformation (۴ معمول استفاده کرد؟ معمول استفاده کرد؟ (۲ چه مینامند؟ (۳) موتاسیون نقطهای RNA مثول تشخیص پروموتر است؟ (۳) دلتا	Conjugation (۲ Transformation (۴ State of the state of	Transformation (۴ Quorum sensing (۳ ژنهای کدام مولکول را نمی توان به عنوان ژن رفرانس معمول استفاده کرد؟ شمای کدام مولکول را نمی توان به عنوان ژن رفرانس معمول استفاده کرد؟ GAPDH (۳ MHC-II (۱ MHC-II (۱ MHC-II (۱ MHC-II (۱ MHC-II (۱ کدونی که برای آن مولکول tRNA نرمال وجود ندارد را چه می نامند؟ (۱ missense تا کدون قطهای کدون E. coli یک کدام یک از آنزیم های DNA کالیمراز وظیفهٔ جایگزینی پرایمرهای DNA Polymerase II (۱ DNA Polymerase II (۲ DNA Polymerase I (۳ Terminal deoxy nudeotidyl Transferase (۴ کدام زیر واحد آنزیم polymerase باکتری مسئول تشخیص پروموتر است؟ کدام زیر واحد آنزیم transposons (۱ یک نقطه به نقطه دیگر را ایک ترمهوروم که قابلیت جابه جایی از یک نقطه به نقطه دیگر را الاست (۱ سکتری متحرک یک کروموزوم که قابلیت جابه جایی از یک نقطه به نقطه دیگر را الاست (۱ سکتری میکری یک کروموزوم که قابلیت جابه جایی از یک نقطه به نقطه دیگر را الاست (۱ سکتری سکتری یک کروموزوم که قابلیت جابه جایی از یک نقطه به نقطه دیگر را الاست (۱ سکتری س		

